Types of Chemical Reactions

Textbook pages 256-271

Before You Read

Many chemical reactions occur in daily life. In the lines below, describe one chemical reaction you have observed.

How are chemical reactions classified?

Chemical reactions can be classified as one of six main types: synthesis, decomposition, single replacement, double replacement, neutralization (acid-base), or combustion. You can identify each type of reaction by examining the reactants. This makes it possible to classify a reaction and then predict the identity of the products.

What is a synthesis (combination) reaction?

In a **synthesis** (combination) reaction, two or more reactants (A and B) combine to produce a single product (AB).

element + element \rightarrow compound A + B \rightarrow AB (The letters A and B represent elements.)

What is a decomposition reaction?

hydrogen + oxygen \rightarrow water \bigcirc


In a **decomposition** reaction a compound is broken down into smaller compounds or separate elements. A decomposition reaction is the reverse of a synthesis reaction.

compound \rightarrow element + element AB \rightarrow A + B calcium chlorate \rightarrow calcium chloride + oxygen

Make Flash Cards

Create flash cards to help you learn the different reactions. Write the name of the reaction on the front of the card and an example on the back.

How many products are there in a synthesis reaction?

continued

What is a single replacement reaction?

In a **single replacement** reaction, a reactive element (a metal or a non-metal) and a compound react to produce another element and another compound. In other words, one of the elements in the compound is replaced by another element. The element that is replaced could be a metal or a non-metal.

element + compound → element + compound $A + BC \rightarrow B + AC$ where A is a metal OR

 $A + BC \rightarrow C + BA$ where A is a non-metal

aluminum + lead(II) nitrate \rightarrow aluminum nitrate + lead

What is a double replacement reaction?

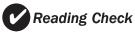
A **double replacement** reaction usually involves two ionic solutions that react to produce two other ionic compounds. One of the compounds forms a **precipitate**, which is an insoluble solid that forms from a solution. The precipitate floats in the solution, then settles and sinks to the bottom. The other compound may also form a precipitate, or it may remain dissolved in solution.

ionic solution + ionic solution \rightarrow ionic solution + ionic solid

 $AB(aq) + CD(aq) \rightarrow AD(aq) + CB(s)$

iron(II) chloride + lithium phosphate

→ iron(II) phosphate + lithium chloride


What is a neutralization (acid-base) reaction?

When an acid and a base are combined, they will neutralize each other. In a neutralization (acid-base) reaction, an acid and a base react to form a salt and water.

acid + base → salt + water $HX + MOH \rightarrow MX + H_2O$

(X represents a negative ion. M represents a positive ion.)

sulphuric acid + sodium hydroxide

What is another name for a neutralization reaction?

→ sodium sulphate + water •

continued

What is a combustion reaction?

Combustion is the rapid reaction of a compound or element with oxygen to form an oxide and produce heat. For example, organic compounds, such as methane, combust with oxygen to form carbon dioxide (the oxide of carbon) and water (the oxide of hydrogen).

hydrocarbon + oxygen
$$\rightarrow$$
 carbon dioxide + water $C_x C_y + O_2 \rightarrow CO_2 + H_2O$

(The subscripts X and Y represent integers.)

 $C_2 H_6 O_3 + O_2 \rightarrow CO_2 + H_2O$

The summary chart below compares the six types of chemical reactions.

Reaction Type	Reactants and Products	Notes on the Reactants
Synthesis (combination)	$A + B \rightarrow AB$	• Two elements combine
Decomposition	$AB \rightarrow A + B$	One reactant only
Single replacement		
If A is a metal	$A + BC \rightarrow B + AC$	One element and one compound
If A is a non-metal	$A + BC \rightarrow C + BA$	
Double replacement	$AB + CD \rightarrow AD + CB$	• Two compounds react.
Neutralization (acid-base)	$HX + MOH \rightarrow MX + H_2O$	Acid plus base
Combustion	$C_XH_Y + O_2 \rightarrow CO_2 + H_2O$	Organic compound with oxygen

Use with textbook pages 256–267.

Classifying chemical reactions

Classify each of the following reactions as synthesis (S), decomposition (D), single replacement (SR), double replacement (DR), neutralization (N), or combustion (C). Place the correct letter representing the reaction type in the space provided. Then **balance** the chemical equation by placing the correct coefficients in the equation.

$$\underline{\hspace{1cm}}$$
 17. $\underline{\hspace{1cm}}$ P + $\underline{\hspace{1cm}}$ Cl₂ \rightarrow $\underline{\hspace{1cm}}$ PCl₃

$$18. \quad C_6H_6 + O_7 \rightarrow CO_7 + H_9O$$

$$19.$$
 $K_2SO_4 +$ $BaCl_2 \rightarrow$ $BaSO_4 +$ KCl

$$20.$$
 $H_3PO_4 +$ $Ca(OH)_2 \rightarrow$ $H_2O +$ $Ca_3(PO4)_2$

$$NF_3 \rightarrow N_2 + F_2$$

$$22.$$
 Al + $N_2 \rightarrow$ AlN

$$_{-----}$$
 23. $_{---}$ HF + $_{----}$ Fe(OH) $_{3}$ \rightarrow $_{----}$ H $_{2}$ O + $_{----}$ FeF $_{3}$

______ 24. ____
$$GaF_3 + ____ Cs \rightarrow ___ CsF + ____ Ga$$

$$25.$$
 $Ca(NO_3)_2 + Ma_3PO_4 \rightarrow Ca_3(PO_4)_2 + NaNO_3$

______ 26. ____ HCl + ____ Al(OH)
$$_3$$
 \rightarrow ____ AlCl $_3$ + ____ H $_2$ O

$$27. \quad C_5H_{12} + O_2 \rightarrow CO_2 + H_2O$$

$$\underline{\qquad}$$
 28. $\underline{\qquad}$ $H_2O_2 \rightarrow \underline{\qquad}$ $H_2O + \underline{\qquad}$ O_2

$$29.$$
 $NH_4HCO_3 + NaCl $\rightarrow NaHCO_3 + NH_4Cl$$

$$\underline{\hspace{1cm}}$$
 30. $\underline{\hspace{1cm}}$ Na + $\underline{\hspace{1cm}}$ O₂ \rightarrow $\underline{\hspace{1cm}}$ Na₂O₂

Use with textbook pages 256-267.

Types of chemical reactions—Word equations

Classify each of the following chemical reactions as synthesis (S), decomposition (D), single replacement (SR), double replacement (DR), or neutralization (N). Then write a balanced equation for each word equation.

]	. magnesium -	⊦ sulphur →	magnesium	sulphide

2.	potassium h	vdroxide +	sulphuric	acid \rightarrow	water +	potassium	sulphate
	F	<i>y</i>				F	

3. chlorine + potassium iodide →	potassium chloride + iodide
----------------------------------	-----------------------------

4. aluminum	chloride + sodium hydroxide	\rightarrow	aluminum hydroxide + sodium
chloride	•		•

$_{}$ 5. lead(II) oxide \rightarrow	lead + oxygen
---------------------------------------	---------------

6	magnesium	L cilvon	nitroto		cilvon 1	magnagium	nitroto
0.	magnesium	T 311 VC1	muaic	,	SHVCIT	magnesium	muaic

7. cadmium(II)	nitrate + ammoniu	m sulphide \rightarrow	cadmium(II) sulphide	+
ammonium		r	() [

8. tin(IV) hydroxide + hydrogen bromide \rightarrow water + tin(IV) bromide

9. sodium + oxygen
$$\rightarrow$$
 sodium oxide

10. sodium nitride
$$\rightarrow$$
 sodium + nitrogen

11. calcium hydroxide -	+ phosphoric acid → water + calcium phosphate
12. barium chloride + s chloride	odium carbonate → barium carbonate + sodium
13. zinc + nickel(II) nit	rate → zinc nitrate + nickel
14. antimony + iodine	→ antimony(III) iodide
15. carbon dioxide →	carbon + oxygen
16. iron(III) sulphate +	lead → lead(II) sulphate + iron
17. barium nitrate + am carbonate	monium carbonate → ammonium nitrate + barium
18. zinc hydroxide + hy	drochloric acid → water + zinc chloride
19. ammonium carbona magnesium carbona	te + magnesium chloride → ammonium chloride + te
20. rubidium hydroxide	+ sulphuric acid → water + rubidium sulphate

Use with textbook pages 256-267.

Predicting the products

- **1.** For each of the following:
 - I. predict the products
 - II. classify the reaction as synthesis (S), decomposition (D), single replacement (SR), double replacement (DR), neutralization (N), or combustion (C)
 - III. write a balanced equation

 $\underline{\qquad}$ (a) $H_2O \rightarrow$

 $\underline{\hspace{1cm}} (b) \ H_2 \ + \ Cl_2 \ \rightarrow$

 $\underline{\qquad}$ (c) NaI + F₂ \rightarrow

 $\underline{\qquad}$ (d) AgNO₃ + Na₃PO₄ \rightarrow

 $\underline{\qquad}$ (e) Ba(OH)₂ + H₂SO₄ \rightarrow

 $(f) P_4 + Cl_2 \rightarrow$

 $(g) CH_3OH + O_2 \rightarrow$

 $\underline{\qquad} \text{(h) Sr(OH)}_2 + \text{H}_3 \text{PO}_4 \rightarrow$

 $_{}$ (i) FeI₂ \rightarrow

 $(k) \operatorname{Cr_2(SO_4)_3} + \operatorname{K_2CO_3} \rightarrow$

 $(l) C_2H_5OH + O_2 \rightarrow$

$$\underline{\qquad}$$
 (m) H₂ + F₂ \rightarrow

$$(n) Ag_2O \rightarrow$$

$$\underline{\qquad}$$
 (o) Cl₂ + KI \rightarrow

2. For each of the following:

- I. complete the word equation by predicting the products
- II. classify the reaction as synthesis (S), decomposition (D), single replacement (SR), double replacement (DR), or neutralization (N)
- III. write a balanced equation for each word equation

(a) so	odium +	chlorine	\rightarrow
--------	---------	----------	---------------

- \longrightarrow (b) gallium fluoride + cesium \rightarrow
- \rightarrow (c) calcium hydroxide + nitric acid \rightarrow
- \rightarrow (d) barium chloride + silver nitrate \rightarrow
- \longrightarrow (e) cobalt(II) bromide \rightarrow
- (f) copper(II) iodide + bromine \rightarrow
- _____(g) phosphoric acid + magnesium hydroxide →
- \longrightarrow (h) zinc + iodine \rightarrow
- ____(i) beryllium chloride \rightarrow
- _____(j) iron(III) sulphate + calcium hydroxide \rightarrow

Use with textbook pages 256–267.

Types of chemical reactions

Match each Chemical Equation to a Reaction Type below. Each Reaction Type may be used only once.

Chemical Equation

- $2 \text{ KClO}_3 \rightarrow 2 \text{ KCl} + 3 \text{ O}_9$
- **2.** _____ 16 Al $\stackrel{\cdot}{+}$ 3 S₈ \rightarrow 8 Al₂S
 3. ____ LiOH + HNO₃ \rightarrow H₂O + LiNO₃
- **4.** _____ 2 $C_6H_{14} + 19 O_2 \rightarrow 14 H_2O + 12 CO_2$
- **5.** \bigcirc 2 AgNO₃ + Cu \rightarrow Cu(NO₃)₂ + 2 Ag
- **6.** Pb(NO₂) $_{2}^{\circ}$ + K₂CrO₄ \rightarrow PbCrO₄ + 2 KNO₃

Reaction Type

- A. synthesis
- **B.** combustion
- **C.** neutralization
- **D.** decomposition
- **E.** single replacement
- **F.** double replacement
- **7.** What type of chemical reaction involves two smaller molecules reacting to produce one larger molecule?
 - **A.** synthesis
 - **B.** combustion
 - **C.** decomposition
 - **D.** single replacement
- **8.** Carbon dioxide gas can be broken down into solid carbon and oxygen gas. What type of reaction is this?
 - **A.** synthesis
- **C.** neutralization
- **B.** combustion
- **D.** decomposition

Use the following word equation to answer question 9.

potassium chlorate → oxygen + potassium chloride

- **9.** What type of reaction is represented by the word equation?
 - **A.** synthesis
 - **B.** decomposition
 - **C.** single replacement
 - **D.** double replacement
- **10.** Which of the following represents a single replacement reaction?

l.	$Sn + 2 AgNO_3 \rightarrow Sn(NO_3)_2 + 2 Ag$
II.	$gold(II)$ cyanide + zinc \rightarrow gold + zinc cyanide
III.	Magnesium iodide reacts with bromine gas to produce magnesium bromide and iodine.

- **A.** I and II only
- **C.** II and III only
- **B.** I and III only
- **D.** I, II, and III
- **11.** Which set of ordered coefficients balances the following equation?

$$Fe + O_2 \rightarrow Fe_2O_3$$

- **A.** 2, 1, 1
- **C.** 4, 2, 3
- **B.** 2, 2, 2
- **D.** 4, 3, 2
- **12.** What coefficient is needed for water in order to balance the following equation?

$$C_{2}H_{6} + O_{2} \rightarrow CO_{2} + H_{2}O$$

- **A.** 2
- **C.** 4
- **B.** 3
- **D**. 6
- **13.** Hydrochloric acid can be used to neutralize barium hydroxide. What is the formula for the salt produced by this neutralization?
 - A. BaCl₂
- **C.** Ba(ClO₂),
- **B.** Ba(ClO),
- **D.** Ba(ClO₃),

- **14.** Which reactants form the salt MgSO₄ in a neutralization reaction?
 - A. SO₂ and MgO₂
 - **B.** H₂S and MgOH
 - C. H₂O and Mg(OH)₂
 - **D.** H_2SO_4 and $Mg(OH)_2$
- **15.** Given the incomplete equation of a chemical reaction: $C_9H_6O_4 + O_2 \rightarrow$

Which of the following are the products formed from this reaction?

I.	H_2
II.	H ₂ 0
III.	CO ₂

- A. I and II only
- **B.** I and III only
- **C.** II and III only
- D. I, II, and III
- **16.** Given the incomplete equation of a chemical reaction:

barium chloride + ammonium carbonate →

Which of the following are the products formed from this reaction?

I.	H ₂ 0
II.	NH ₄ CI
III.	BaCO ₃

- **A.** I and II only
- **B.** I and III only
- **C.** II and III only
- D. I, II, and III

Use the following chemical reaction to answer question 17.

$$2 \text{ HNO}_3 + \text{Be(OH)}_2 \rightarrow \text{Be(NO}_3)_2 + 2 \text{ H}_2\text{O}$$

17. Which of the following statements is true?

I.	HNO ₃ is an acid.
II.	Be(NO ₃) ₂ is a base.
III.	This is a neutralization reaction.
IV.	The products of this reaction are a salt and water.

- A. I, II, and III only
- B. I, II, and IV only
- C. I, III, and IV only
- **D.** II, III, and IV only
- **18.** Sodium nitrate is produced as a result of mixing a solution of cadmium(II) nitrate with a solution of sodium sulphide. What is the other compound formed from this reaction?
 - A. CdS
 - B. CdSO₄
 - \mathbf{C} . NaS₂
 - **D.** CdNO₄